
1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

CMake TPL Support

Using Find_package

Pros/Cons

Will Dicharry, Brent

Perschbacher

SAND 2011-8211P

2 2

Current Issues

1. CMake Compatibility

 We currently don’t use standard interfaces defined by Cmake.
 find_package(<name> [REQUIRED] [COMPONENTS] component…)

 Foo_INCLUDE_DIRS, Foo_LIBRARIES, Foo_FOUND, …

 We typically don’t use existing Find*.cmake logic.
 Exceptions: CUDA, Qt

2. TPL Components

 Some TPLs have multiple components.
 Boost

 Packages aren’t always interested in all provided components.
 Boost, HDF5

3. TPL versions

 Some packages need a different version of a TPL than another

package
 SuperLU

4. TPL dependencies

 TPLs depend on one another.
 ExodusII, NetCDF4, HDF5

 Dependencies can be required or optional.

3 3

CMake Compatibility

 CMake is widely used.

 Client applications/libraries expect find_package interface.

 Some Find Modules are robust.

 Boost

 Qt

 CUDA

 Trilinos

 Some aren’t.

 MPI

 Can override behavior of FindFoo.cmake at the project level by setting

CMAKE_MODULE_PATH.

 Not locked into the system implementation.

 Utilizing interfaces that developers expect improves interoperability.

4 4

TPL Components/Versions

 Some packages depend only on certain components of TPLs.

 Some subpackages depend only on certain components of TPLs.

 find_package provides a standard interface for handling this.

 find_package(Foo COMPONENTS bar baz)

 Foo_LIBRARIES, Foo_bar_LIBRARY, Foo_baz_LIBRARY

 TPL dependency isn’t all or nothing.

 Packages can choose a minimal set of dependencies.

 Language bindings.

 Specific versions of TPLs are sometimes required.

 find_package(Foo 4.3.7 [EXACT])

 Interface is distinct from Trilinos package architecture dependencies.

 Inconsistent

5 5

TPL Dependencies

 Some TPLs depend on other TPLs.

 Current options:

 TPL1 depends on TPL2 -> put TPL2 libraries in TPL1.

 Client packages enable both manually.

 Solution: Find_package can call find_package internally.

 Similar to option 1.

 Duplicates possible.

 Handles REQUIRED/COMPONENTS issues nicely.

 What about optional dependencies?

 Probably will have issues crossing between system/custom find

modules.

6 6

TPL Support Options

 Determine how we will work with current dependencies structure:

1. Packages call find_package?

 Dependency decisions are made by packages.

 How do we handle conditional compilation?

 Would need to change package code.

2. Done from package architecture?

 Global dependency decisions based on complete package set.

 How to handle REQUIRED/COMPONENTS?

 Transparent to packages.

7 7

Conclusion

 Any other requirements we’re missing

 Cmake compatibility

 TPL components

 TPL versions

 TPL dependencies

 Who would like to be the involved in the design?

 Anyone opposed to moving to find_package?

8 8

Future Directions

 Automation of TPL build and install.

 The new Jenkins test setup provides a build farm with a variety of

platforms (~20 machines currently).

 Jenkins can dynamically distribute testing loads.

 How do we make sure the right TPLs are available?

 Options:
 TPL extra repository

 Find modules that download

 Package dependencies using find_package.

 Does it make sense to use find_package for Trilinos package

dependencies?

 This might assist with some of the subpackage issues.
 Find_package(Thyra COMPONENTS Core EpetraAdapters)

